An Experimental Evaluation of Nearest Neighbour Time Series Classification

نویسندگان

  • Anthony Bagnall
  • Jason Lines
چکیده

Data mining research into time series classification (TSC) has focussed on alternative distance measures for nearest neighbour classifiers. It is standard practice to use 1-NN with Euclidean or dynamic time warping (DTW) distance as a straw man for comparison. As part of a wider investigation into elastic distance measures for TSC [1], we perform a series of experiments to test whether this standard practice is valid. Specifically, we compare 1-NN classifiers with Euclidean and DTW distance to standard classifiers, examine whether the performance of 1-NN Euclidean approaches that of 1-NN DTW as the number of cases increases, assess whether there is any benefit of setting k for k-NN through cross validation whether it is worth setting the warping path for DTW through cross validation and finally is it better to use a window or weighting for DTW. Based on experiments on 77 problems, we conclude that 1-NN with Euclidean distance is fairly easy to beat but 1-NN with DTW is not, if window size is set through cross validation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-measure Nearest Neighbor Algorithm for Time Series Classification

In this paper, we have evaluated some techniques for the time series classification problem. Many distance measures have been proposed as an alternative to the Euclidean Distance in the Nearest Neighbor Classifier. To verify the assumption that the combination of various similarity measures may produce a more accurate classifier, we have proposed an algorithm to combine several measures based o...

متن کامل

[Proceeding] A multi-measure nearest neighbor algorithm for time series classification

In this paper, we have evaluated some techniques for the time series classification problem. Many distance measures have been proposed as an alternative to the Euclidean Distance in the Nearest Neighbor Classifier. To verify the assumption that the combination of various similarity measures may produce a more accurate classifier, we have proposed an algorithm to combine several measures based o...

متن کامل

An efficient weighted nearest neighbour classifier using vertical data representation

The k-nearest neighbour (KNN) technique is a simple yet effective method for classification. In this paper, we propose an efficient weighted nearest neighbour classification algorithm, called PINE, using vertical data representation. A metric called HOBBit is used as the distance metric. The PINE algorithm applies a Gaussian podium function to set weights to different neighbours. We compare PIN...

متن کامل

Experiments with an Ensemble Self-Generating Neural Network

In an earlier paper, we introduced an ensemble model called ESGNN (ensemble self-generating neural network) which can be used to reduce the error for classification and chaotic time series prediction. Although this model can obtain the high accuracy than a single SGNN, the computational cost increase in proportion to the number of SGNN in an ensemble. In this paper, we propose a new pruning SGN...

متن کامل

Assessing the Performance of Different Time Series Classification Methods

Classification of time series has been attracting great interest over the past decade. Recent empirical evidence has strongly suggested that the simple nearest neighbor algorithm is very difficult to beat for most time series problems. While this may be considered good news, given the simplicity of implementing the nearest neighbor algorithm, there are some negative consequences of this. First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.4757  شماره 

صفحات  -

تاریخ انتشار 2014